Exercise 30

Solve the boundary-value problem, if possible.

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0, \quad y(0)=4, \quad y(2)=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
4\left(r^{2} e^{r x}\right)-4\left(r e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
4 r^{2}-4 r+1=0
$$

Solve for r.

$$
\begin{gathered}
(2 r-1)^{2}=0 \\
r=\left\{\frac{1}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{x / 2}$ and $x e^{x / 2}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{x / 2}+C_{2} x e^{x / 2} .
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& y(0)=C_{1}=4 \\
& y(2)=C_{1} e+2 C_{2} e=0
\end{aligned}
$$

Solving this system of equations yields $C_{1}=4$ and $C_{2}=-2$. Therefore, the solution to the boundary value problem is

$$
\begin{aligned}
y(x) & =4 e^{x / 2}-2 x e^{x / 2} \\
& =2 e^{x / 2}(2-x) .
\end{aligned}
$$

Below is a graph of $y(x)$ versus x.

